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Abstract
To address the global environmental pollution problems, the application of biodegradable agricultural waste as a reinforcing 
material in the development of composite materials is one of the prominent solutions for sustainable development. Following 
that in the present investigation, a hybrid epoxy–based composite is fabricated using banana and glass fibers as reinforcing 
materials for lightweight structural applications. The main purpose of this research article is to utilize banana fiber (a bio-
degradable agricultural waste) as a reinforcing material in composite fabrication because of its low cost, non-abrasive, and 
eco-friendly nature. Herein, the fabricated composite material was characterized by various tests such as tensile, flexural, 
hardness, impact, thermal conductivity, and scanning electron microscopy. The effects of volume fraction and sequence of 
banana and glass fiber layers on mechanical properties such as tensile strength, hardness, flexural, and impact strengths were 
also investigated. Our results showed that for sample with alternating layer of banana and glass fibers and 1 wt.% charcoal, 
the epoxy-based composite exhibited the highest tensile, flexural and impact strengths of about 80.9 N/mm2, 145.4 N/mm2, 
and 3.5 kJ/m2, respectively. The same sample also reported the highest hardness of 56 VH. Furthermore, with the addition 
of banana fibers, the thermal conductivity of the laminates also increased. This enhancement in the mechanical and thermal 
properties with amalgamation of biodegradable banana fiber, strong glass fiber and water-resistant epoxy resin may help in 
manufacturing of lightweight composite domains for automobile and structural applications.
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1 Introduction

Nowadays, various researchers are utilizing the biodegrad-
able materials such as agricultural wastes to produce com-
posite materials [1–6]. In agricultural-based countries such 
as India, Russia, Brazil, and France, major challenges pre-
vail in using the abundant agricultural wastes. Specifically, 

banana is the oldest cultivated crop in the world with a 
global production of about 70 million tons, mainly grown in 
tropical and subtropical regions [7–9]. As per the investiga-
tion of Kulkarni et al. [10], banana fiber has four cell types: 
xylem, sclerenchyma, parenchyma, and phloem. In terms 
of mechanical properties of various natural fibers, Rao and 
Rao [11] conducted a detailed study and found that the aver-
age tensile strength and percent elongation of banana fiber 
were 600 MPa and 3.36%, respectively. Nguyen et al. [12] 
fabricated a polylactic acid-based composite reinforced with 
banana fiber, with aim of producing a complete eco-friendly 
composite material. They reported the optimum mechani-
cal properties at 20 wt.% banana fiber. Ramesh et al. [13] 
fabricated epoxy-based composites reinforced with banana 
fibers with emphasis on environmental friendliness. The 
maximum tensile and flexural strength were obtained for 
a composite having 50% banana and 50% epoxy resin were 
112.58 MPa and 76.53 MPa, respectively. Kusic et al. [14] 
extracted banana fibers from the agricultural wastes of the 
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Canary Island. In their work, they investigated the thermo-
mechanical properties of different polymer-based (acryloni-
trile–butadiene–styrene, polystyrene, and high-density poly-
ethylene) composites reinforced with banana fibers. They 
found that with the increase of banana fibers, the glass tran-
sition temperature of the laminate decreased. On the other 
hand, tensile and flexural strength of the laminate increased 
with increasing the banana fiber content.

Some researchers also used banana fibers to prepare 
hybrid polymer–based composites to replace inorganic 
mineral fillers. Nayak [15] fabricated a banana/glass fiber 
hybrid composite with a polypropylene matrix using the 
melt blending technique. This article was mainly concerned 
with the biodegradability study and flammability analy-
sis of the hybrid composite. Samal et al. [16] fabricated a 
banana fiber–based hybrid composite with polypropylene 
matrix. The results showed an enhancement in the mechani-
cal properties at 30 wt.% of both fibers in the ratio of 15:15 
wt.%. Batu and Lemu [17] fabricated a hybrid composite 
using false banana and glass fibers as reinforcing material 
in epoxy matrix. A volume ratio of 50:50 between fibers 
and epoxy resin was selected. Two main factors (namely 
the fiber orientation and fiber volume fraction of the false 
banana) were investigated, and were studied for the tensile, 
compressive, and flexural strengths. The maximum tensile 
and flexural strength was obtained at 0°, and the minimum 
at 90° orientation of the false banana fiber. Hariprasad et al. 
[18] prepared a banana/coir hybrid composite to use natural 
fibers as reinforcing material for composite development. 
The tensile, flexural and impact strength of the hybrid com-
posite were found to be 16.43 MPa, 20.52 MPa, and 0.76 
N-m, respectively. Kumar et al. [19] fabricated a banana 
fiber–based hybrid composite with a woven coconut sheath 
using compression molding technique. The objective of the 
research work was to investigate the vibration behavior of 
the hybrid composite. The effects of the layering pattern 
(three-layer CCC, BCB, CBC, CCB, BBC, CBC, and BBB; 
where B is the banana fiber and C is the coconut sheath 
layer) on the mechanical properties were studied in detail. 
The highest tensile strength was found for the BBC hybrid 
composite, while the highest flexural strength was found for 
the CBC hybrid composite. They showed that the vibration 
behavior of the hybrid composite is affected by the layer 
pattern, and the highest natural frequency was found for the 
CBC hybrid composite.

Recently in 2022, Saxena and Chawala [20] performed 
the stress, directional, and rotational analysis of banana 
fiber–based hybrid composite using ANSYS software. In 
their work, weight percentage of sisal and banana fiber was 
varied with constant amount of glass fiber. Moreover, orienta-
tion of the fibric layers was also varied. Results show that that 
minimum deformation is obtained for sisal-banana-glass-sisal 
(SBGS) at 90°, + 45°, − 45°, and 90° orientation, respectively. 

Balaji et al. [21] investigated the thermos-mechanical proper-
ties of banana fiber (BF) and banana particle (BP)–reinforced 
epoxy composite. Results showed that the hybrid composite 
having both BF and BP hold the superior mechanical proper-
ties. Deepan et al. [22] fabricated the banana/epoxy compos-
ite with rice husk as a filler material to address the issue of 
environmental pollution. Their results showcased that better 
mechanical properties were obtained at 30 wt.% of banana 
fiber and 10 wt.% of rice husks. At mentioned composition, 
the tensile, flexural, and impact strengths were 210 MPa, 
264 MPa, and 436.1 J/m respectively. Jagadeesan et al. [23] 
incorporated the cellulose micro-fillers obtained from sesame 
oil cake in basalt/banana hybrid composite. With the increase 
in microcellulose content mechanical properties of compos-
ite increased. At 5 wt.% of microcellulose content, the tensile 
strength, flexural strength, impact strength, and hardness were 
reported to be 48.83 MPa, 237.66 MPa, 93.17 kJ/m3, and 101 
HRRW, respectively. Gupta et al. [24] fabricated the epoxy-
based composite reinforced with low pressure argon (Ar) gas 
plasma–modified banana fiber. Low pressure Ar plasma was 
applied on the banana fiber with the aim of increase in the 
surface roughness that improved the mechanical properties of 
overall composite domain. Perinbakannan et al. [25] studied 
the effect of banana and Indian almond fiber on physical and 
mechanical properties of epoxy-based composite. Results 
showed that the Indian almond fiber–based composite had 
a higher tensile and flexural strength; whereas, banana fiber 
composite have higher impact strength and moisture absorp-
tion as compared to Indian almond fiber–based composites.

The chief objective of this paper is to use an agricultural-
based biodegradable reinforcing material for the develop-
ment of composite materials for lightweight structural appli-
cations. As the environmental pollution is a major challenge 
in front of fast developing countries. To address this critical 
issue, the use of biodegradable agricultural waste as a rein-
forcing material is one of the prominent solutions for the 
development of structural materials for sustainable develop-
ment. In the present work, the focus is on the preparation of 
a hybrid composition by reinforcing the epoxy matrix with 
banana and glass fibers. The aim is to address the problem 
of agricultural waste disposal and environmental issues. 
The effects of volume fraction and sequence of banana and 
glass fiber layers on mechanical properties such as tensile 
strength, hardness, flexural, and impact strengths were also 
reported.

2  Materials and methods

2.1  Materials

In the present investigation, banana fiber and E-glass fab-
rics were used as reinforcement materials with epoxy resin 
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matrix. Banana fibers (250 g weight) were purchased from 
the Sri Lakshmi group exports and imports, Guntur, India. 
These fibers come under the category of bast fiber obtained 
from bark of banana tree. Glass fibers having a density of 
about 2.54 gm/cm3, plain woven style, 250 g weight and 
thickness of around 0.46 mm were purchased from the Sun-
tech fiber Ltd., Bangalore, India. Charcoal powder of about 
100 mesh size having molecular weight of 12.01 was pur-
chased online from the Sigma-Aldrich. Here in, Lapox L-12 
resin and K-6 hardener were used, and this was provided 
by the Yuje Marketing Ltd., Bangalore, India. Epoxy is the 
cured end product of epoxy resins, as well as a colloquial 
name for the epoxide functional group. Epoxy is also a com-
mon name for a type of strong adhesive used for sticking 
things together [26–40].

2.2  Methods

For fabrication of the composite, firstly the banana and glass 
fibers were first cut in the dimensions of 300 × 300  mm2, 
and then arranged accordingly. The quantity of epoxy was a 
constant for all the 5 samples made, i.e., (80% epoxy) and the 
quantities of banana fibers, charcoal powder, glass fibers, and 
hardener were varied. The various proportions of reinforc-
ing materials were used in precise amounts using a precision 
balance (in grams), as shown in the Table 1. The surface of 
the laminates was cleaned with acetone; then the reinforcing 
materials were placed in the laminates in different composi-
tions with respect to the epoxy resin. Afterwards, the lami-
nates were cured for 24 h, with post-curing of the laminates at 
100 °C. Once the samples were dried up, for characterization 
of prepared composite specimens were cut by waterjet cutting 
as per the dimensions required for various characterization 
tests. After the water-jet cutting was done, the laminate sam-
ples were checked for smooth finishing and voids.

2.3  Characterization

Kalpak computerized universal testing machine of model 
KIC-2–1000-C was employed to conduct the tensile and flex-
ural tests. Five specimens were tested for same composition 

to obtain statistically significant results. ASTM D638-03 
[41] and ASTM D790-07 [42] standards were employed 
to perform the tensile and flexural tests, respectively. All 
the tests were carried out at crosshead speed of 2 mm/min 
and at room temperature. Matsuzawa make-MMT-X7A 
hardness testing machine was employed to determine the 
Vickers microhardness. Square pyramidal shape indenter of 
100 HV having apical angle of 136° was used at 100 gf for 
15 s dwell time. The Vickers hardness values were directly 
recorded by digital tester. Izod impact test was used to deter-
mine the impact strength of all the samples. Five specimens 
were tested for same composition to obtain statistically sig-
nificant results. ISO 8301:1991 standard was employed to 
determine by the thermal conductivity of fabricated com-
posites through HFM 436 Lambda instrument supplied by 
NETZSCH. Three samples were tested for each composi-
tion. Specimens were placed between heating and cooling 
plate which were maintained a consistent temperature dif-
ferential and allows heat to pass over the sample at constant 
pace. Thermal conductivity is measure in term of W/mK on 
the basic of the material to the flow of heat. FEI Quanta 200 
FEG scanning electronic microscope was employed to deter-
mine the scanning electron microscopy (SEM) morphology 
of fractured surfaces of specimens [43–51]. Gold coating of 
fractured surface is done for examination the fiber dispersion 
in matrix and their interfacial bonding [52–55].

3  Results and discussion

3.1  Tensile test

Tensile tests were performed for various epoxy resin-based 
laminates on a universal testing machine (represented in 
Fig. 1); and the corresponding values of ultimate tensile 
strength and Young’s modulus (YM) are stated in Table 2. 
The tensile strength of neat epoxy reinforced with 2 wt.% 
charcoal is about 3.2 N/mm2. Lowest tensile strength was 
obtained for a laminate with a single glass fiber layer and 2 
wt.% charcoal powder (which is about 2.9 N/mm2); whereas 
the maximum tensile strength was obtained (80.9 N/mm2) 

Table 1  Specification of various samples

B Banana biofiber layer, G glass fiber layer, C charcoal

Sample No. Matrix material Reinforcement material Description

1 Epoxy B + B + B Consist of three layer of banana fibers in epoxy matrix
2 G + B + G + B Consist of four layers of glass fiber and banana fiber alternately in epoxy matrix
3 B + G + B + G + 1% C Consist of four layers of banana fiber and glass fiber alternately with 1 wt.% 

charcoal in epoxy matrix
4 2% C 2 wt.% charcoal reinforced in epoxy matrix
5 G + 2% C Glass fiber layer and 2 wt.% charcoal reinforced in epoxy matrix
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for sample 3, that consisted of four layers of banana fibers 
and glass fibers in an alternating manner and 1 wt.% char-
coal powder. This showed that hybridization of banana fib-
ers with glass fibers improves the strength of the laminate. 
Samples 1 and 2 had moderate tensile strength of about 54.9 
N/mm2 and 38.7 N/mm2, respectively. YM of epoxy having 
2 wt.% charcoal is approximately 1073.6 N/mm2. Maximum 
value of YM obtained for sample 1 consists of three lay-
ers of banana fiber. With the addition of glass fiber layers, 
the YM decreased, but there was not any particular trend. 
When charcoal powder was added, an enhancement of YM 
was observed. As for samples 2 and 3: sample 2 has four 
layers of glass and banana fibers (alternatively) without any 
charcoal and possessed a YM of about 630.4 N/mm2, while 
sample 3 consisted of alternate four layers of banana and 
glass fibers with 1 wt.% charcoal and had a YM of about 
1682.6 N/mm2. Thus, it was found that the tensile properties 
of laminates depend on the interfacial adhesion between the 
matrix and reinforcing material, as well as on the properties 
of individual fibers, their orientation, sequence, etc. [56–60].

3.2  Flexural test

Flexural test was performed on different epoxy-based 
laminates on a universal testing machine through three-
point bending set-up, and values of the flexural strength 
and flexural modulus are stated in Table 2 (represented 
in Fig. 2). Similar behavior is shown by different epoxy-
based laminates as shown in the tensile test. Sample 4 has 
flexural strength of about 56.3 N/mm2, whereas addition of 
glass fiber layer in sample 5 results in decrement in flexural 
strength which is about 54.3 N/mm2. Moreover, result 
shows that addition of glass fiber layer results in decrease in 
flexibility of the laminates. This is indicated by samples 1 
and 2, as sample 1 (having all three layers of banana fiber) 
possess higher flexural strength of 87.5 N/mm2; whereas 
sample 2 (where banana fiber layer is replaced by glass fiber) 
has a lower flexural strength of 61.5 N/mm2. Sequence of 
glass and banana fibers also affect the flexural strength, as 
shown in the samples 2 and 3. From the results, it can be 
observed that as the sequence changes flexural strength 

Fig. 1  Tensile strength and 
Young’s modulus of epoxy-
based laminates

Table 2  Mechanical properties of epoxy-based laminates

Sample no. Tensile strength 
(N/mm2)

Young’s modulus (N/mm2) Flexural strength 
(N/mm2)

Flexural modulus 
(GPa)

Hardness (VH) Impact strength 
(kJ/m2)

1 54.9 ± 3.6 1919.4 ± 121.2 87.5 ± 6.3 19.2 ± 0.45 54 ± 3 3.3 ± 0.2
2 38.7 ± 2.3 630.4 ± 43.2 61.5 ± 3.4 8.1 ± 0.21 49 ± 3 2.9 ± 0.1
3 80.9 ± 7.3 1682.6 ± 113.4 145.4 ± 11.2 7.4 ± 0.19 56 ± 4 3.5 ± 0.3
4 3.2 ± 0.2 1073.6 ± 78.4 56.5 ± 3.1 4.1 ± 0.14 18 ± 1 2.0 ± 0.1
5 2.9 ± 0.1 980.8 ± 62.3 54.3 ± 2.7 4.0 ± 0.1 17 ± 1 1.9 ± 0.1
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increases from 61.5 to 145.4 N/mm2 for the samples 2 and 
3, respectively.

3.3  Hardness test

Hardness test was performed on different epoxy-based lami-
nates on Vickers microhardness testing machine (results rep-
resented in Fig. 3), and values of hardness are tabulated in 
the Table 2. The results show that the banana fiber reinforced 
laminates have higher hardness than laminates with glass 
fibers. Sample 1, which is hybrid with only banana biofiber 
as the reinforcing material, has a hardness value of about 54 
VH. Moreover, the hardness of the laminate decreases when 

the banana fiber layer is replaced with glass fibers, i.e., in 
sample 2 that a hardness value of about 49 VH. On the other 
hand, addition of about 1 wt.% charcoal powder leads to an 
improvement in the hardness of the laminates, as in samples 
2 and 3, where hardness value increases from 49 to 56 VH 
for samples 2 and 3, respectively.

3.4  Impact test

Impact test was performed on different epoxy-based lami-
nates, and the values have been reported in Table 2 (plotted 
in Fig. 4). The results show that banana fiber reinforced lam-
inates possess higher impact strength than laminates with 

Fig. 2  Flexural strength and 
modulus of epoxy-based lami-
nates

Fig. 3  Hardness values of 
epoxy-based laminates
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glass fibers. Sample 1, which is hybrid with only banana 
fibers as reinforcing material, has an impact strength of 
about 3.3 kJ/m2. The impact strength of the laminate starts 
decreasing when banana fiber layer is replaced with glass 
fibers, i.e., sample 2 (2.9 kJ/m2). On the other hand, the 
addition of about 1 wt.% charcoal again leads to an improve-
ment in the impact strength of the laminate, where impact 
strength increases from 2.9 to 3.5 kJ/m2 for samples 2 and 
3, respectively.

3.5  Thermal conductivity test

Variation of thermal conductivity values of epoxy-based 
laminates is tabulated in Table 3. The thermal conductivity 
of epoxy is about 0.3 W/mK, as reported in the work of 
Srinivas and Arumugaprabu [61]. Results show that with 
addition of banana fibers, thermal conductivity of laminates 
increases; but increase is not significant as shown by sample 
1 that has a thermal conductivity of about 0.345 W/mK. On 
the other hand, addition of glass fibers result in lowering 
of the thermal conductivity of laminates, i.e., the samples 
2 and 3 have thermal conductivity of 0.217 and 0.207 W/

mK, respectively. But addition of 2 wt.% charcoal enhances 
the thermal conductivity of laminate to a significant level as 
shown in samples 4 and 5 that is about 0.501 and 0.398 W/
mK, respectively. Meanwhile, the authors also conducted the 
flame test whose results are reported in the Table 4.

3.6  SEM analysis

Figure  5 shows different SEM morphology of fracture 
surface (in tensile test) of epoxy-based laminate composites. 
SEM morphology shows uniform dispersion of banana and 
glass fibers without making agglomeration in the composite 
domain. Moreover, fibers are uniformly dispersed in epoxy 
matrix in preferred direction as shown in the samples 1, 2, 
and 3. Fracture surface of banana and glass fiber reinforced 
laminates show the pulling out, dislocation of fiber, and fiber 
fracture in the specimen. SEM image of sample 3 shows 
that adhesion between fibers and epoxy matrix is more 
as compared to samples 1 and 2; due to which sample 3 
possess the highest tensile strength, as compared to other two 
samples. For sample 4, i.e., when 2 wt.% of charcoal particles 
is added in the epoxy matrix, brittle nature is observed. 

Fig. 4  Impact strength of 
epoxy-based laminates

Table 3  Thermal conductivity of epoxy-based laminates

Sample No. Mean tempera-
ture (°C)

Delta tempera-
ture (°C)

Thermal conduc-
tivity (W/m K)

1 35 10 0.345 ± 0.021
2 35 10 0.217 ± 0.018
3 35 10 0.207 ± 0.012
4 35 10 0.501 ± 0.047
5 35 10 0.398 ± 0.031

Table 4  Flame test results

Sample No. Dripping Ignition UL 94 rating

1 Yes Yes V2
2 No No V1
3 No No V1
4 Yes Yes V2
5 Yes Yes V2
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Fig. 5  SEM morphology of epoxy-based laminates
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Moreover, no agglomeration of the charcoal powder is seen 
in the SEM morphology of samples 4 and 5. This means that 
a good interfacial adhesion between the charcoal particles 
and epoxy matrix existed.

4  Conclusions

The main focus of the present work is the preparation of 
a hybrid composition by reinforcing epoxy matrix with 
biodegradable banana and strong glass fibers. With aim 
to address the problems of agricultural waste disposal and 
environmental pollution, this investigation provides effec-
tive measures for waste disposal and improve the tensile, 
flexural, and impact strengths of the epoxy-based compos-
ites to increase their applications in daily life. Our results 
showcase that the composite reinforced with banana fiber 
has better mechanical properties when compared with the 
glass fiber composite, and can be used as a substitute for 
relatively expensive glass fiber. Various samples having dif-
ferent sequences of banana and glass fiber layers were put to 
mechanical and thermal tests. The maximum tensile, flex-
ural, impact strengths, and hardness of the composite were 
measured to be 80.9 N/mm2, 145.4 N/mm2, 3.5 kJ/m2, and 
56 VH, respectively in the sample 3 (a hybrid of banana and 
glass fibers with 1 wt.% charcoal powder). To add on, the 
addition of banana fibers also increased the thermal conduc-
tivity of laminates.
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